6 v 5 4 O ct 2 00 6 Non - Commutative Batalin - Vilkovisky Algebras , Homotopy Lie Algebras and the Courant Bracket

نویسنده

  • K. Bering
چکیده

We consider two different constructions of higher brackets. First, based on a Grassmann-odd, nilpotent ∆ operator, we define a non-commutative generalization of the higher Koszul brackets, which are used in a generalized Batalin-Vilkovisky algebra, and we show that they form a homotopy Lie algebra. Secondly, we investigate higher, so-called derived brackets built from symmetrized, nested Lie brackets with a fixed nilpotent Lie algebra element Q. We find the most general Jacobi-like identity that such a hierarchy satisfies. The numerical coefficients in front of each term in these generalized Jacobi identities are related to the Bernoulli numbers. We suggest that the definition of a homotopy Lie algebra should be enlarged to accommodate this important case. Finally, we consider the Courant bracket as an example of a derived bracket. We extend it to the " big bracket " of exterior forms and multi-vectors, and give closed formulas for the higher Courant brackets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homotopy Lie Algebras and the Courant Bracket

We consider two different constructions of higher brackets. First, based on a Grassmann-odd, nilpotent ∆ operator, we define a non-commutative generalization of the higher Koszul brackets, which are used in a generalized Batalin-Vilkovisky algebra, and we show that they form a homotopy Lie algebra. Secondly, we investigate higher, so-called derived brackets built from symmetrized, nested Lie br...

متن کامل

Deformations of Batalin–vilkovisky Algebras

We show that a graded commutative algebra A with any square zero odd differential operator is a natural generalization of the Batalin–Vilkovisky algebra. While such an operator of order 2 defines a Lie algebra structure on A, an operator of an order higher than 2 (Koszul–Akman definition) leads to the structure of a strongly homotopy Lie algebra (L∞–algebra) on A. This allows us to give a defin...

متن کامل

Constructions of Dgbv Algebras from Lie Algebras

We give some constructions of diierential Gerstenhaber-Batalin-Vilkovisky algebras from a class of Lie algebras. In our construction, we make use of the solutions to the classical Yang-Baxter equations, and ideas from Poisson geometry. A graded commutative algebra (A; ^) with a bracket ] of degree?1 is called a G-algebra (Gerstenhaber algebra) if: (a) (A1]; ]) is a Lie algebra, where A1] is A w...

متن کامل

ar X iv : m at h / 04 10 62 1 v 1 [ m at h . Q A ] 2 9 O ct 2 00 4 HOMOTOPY ALGEBRAS AND NONCOMMUTATIVE GEOMETRY

We study cohomology theories of strongly homotopy algebras, namely A∞, C∞ and L∞-algebras and establish the Hodge decomposition of Hochschild and cyclic cohomology of C∞-algebras thus generalising previous work by Loday and Gerstenhaber-Schack. These results are then used to show that a C∞-algebra with an invariant inner product on its cohomology can be uniquely extended to a symplectic C∞-alge...

متن کامل

Isomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket

One may introduce at least three different Lie algebras in any Lagrangian field theory : (i) the Lie algebra of local BRST cohomology classes equipped with the odd Batalin-Vilkovisky antibracket, which has attracted considerable interest recently ; (ii) the Lie algebra of local conserved currents equipped with the Dickey bracket ; and (iii) the Lie algebra of conserved, integrated charges equip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007