6 v 5 4 O ct 2 00 6 Non - Commutative Batalin - Vilkovisky Algebras , Homotopy Lie Algebras and the Courant Bracket
نویسنده
چکیده
We consider two different constructions of higher brackets. First, based on a Grassmann-odd, nilpotent ∆ operator, we define a non-commutative generalization of the higher Koszul brackets, which are used in a generalized Batalin-Vilkovisky algebra, and we show that they form a homotopy Lie algebra. Secondly, we investigate higher, so-called derived brackets built from symmetrized, nested Lie brackets with a fixed nilpotent Lie algebra element Q. We find the most general Jacobi-like identity that such a hierarchy satisfies. The numerical coefficients in front of each term in these generalized Jacobi identities are related to the Bernoulli numbers. We suggest that the definition of a homotopy Lie algebra should be enlarged to accommodate this important case. Finally, we consider the Courant bracket as an example of a derived bracket. We extend it to the " big bracket " of exterior forms and multi-vectors, and give closed formulas for the higher Courant brackets.
منابع مشابه
Homotopy Lie Algebras and the Courant Bracket
We consider two different constructions of higher brackets. First, based on a Grassmann-odd, nilpotent ∆ operator, we define a non-commutative generalization of the higher Koszul brackets, which are used in a generalized Batalin-Vilkovisky algebra, and we show that they form a homotopy Lie algebra. Secondly, we investigate higher, so-called derived brackets built from symmetrized, nested Lie br...
متن کاملDeformations of Batalin–vilkovisky Algebras
We show that a graded commutative algebra A with any square zero odd differential operator is a natural generalization of the Batalin–Vilkovisky algebra. While such an operator of order 2 defines a Lie algebra structure on A, an operator of an order higher than 2 (Koszul–Akman definition) leads to the structure of a strongly homotopy Lie algebra (L∞–algebra) on A. This allows us to give a defin...
متن کاملConstructions of Dgbv Algebras from Lie Algebras
We give some constructions of diierential Gerstenhaber-Batalin-Vilkovisky algebras from a class of Lie algebras. In our construction, we make use of the solutions to the classical Yang-Baxter equations, and ideas from Poisson geometry. A graded commutative algebra (A; ^) with a bracket ] of degree?1 is called a G-algebra (Gerstenhaber algebra) if: (a) (A1]; ]) is a Lie algebra, where A1] is A w...
متن کاملar X iv : m at h / 04 10 62 1 v 1 [ m at h . Q A ] 2 9 O ct 2 00 4 HOMOTOPY ALGEBRAS AND NONCOMMUTATIVE GEOMETRY
We study cohomology theories of strongly homotopy algebras, namely A∞, C∞ and L∞-algebras and establish the Hodge decomposition of Hochschild and cyclic cohomology of C∞-algebras thus generalising previous work by Loday and Gerstenhaber-Schack. These results are then used to show that a C∞-algebra with an invariant inner product on its cohomology can be uniquely extended to a symplectic C∞-alge...
متن کاملIsomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket
One may introduce at least three different Lie algebras in any Lagrangian field theory : (i) the Lie algebra of local BRST cohomology classes equipped with the odd Batalin-Vilkovisky antibracket, which has attracted considerable interest recently ; (ii) the Lie algebra of local conserved currents equipped with the Dickey bracket ; and (iii) the Lie algebra of conserved, integrated charges equip...
متن کامل